Blog

Which is Better: CO₂ or Fiber Laser?

fiber-laser

Table of Contents

Fiber Laser

The meaning of fiber laser

Fiber laser describes a laser utilizing rare earth component doped glass fiber as a gain tool.

Based on fiber amplifiers, fiber lasers can be developed.

Principle of fiber laser

Under the action of pump light, high power density is very easily developed in fiber optics, resulting in the “particle number inversion” of the laser working material’s laser power level.

The laser oscillation outcome can be formed when the favorable comments loop (creating a resonator) is correctly added.

Applications of fiber laser

Fiber laser has a large range of applications, consisting of laser fiber interaction, laser room long-distance interaction, industrial shipbuilding, vehicle manufacturing, laser engraving, laser noting, laser cutting, printing roller, steel and non-metal exploration, reducing, welding (brazing, quenching, cladding, and deep welding), military and national defense safety and security, medical instruments as well as equipment, and also massive framework construction, as the pump source of other lasers, etc.

Kinds of fiber laser

There are numerous kinds of category approaches for fiber lasers. The more typical are categorized by working mode, band range, and dielectric doped rare-earth aspects.

By working mode

  • Constant fiber laser (laser cutting, welding, cladding).
  • Quasi-continuous fiber laser (place welding, joint welding, drilling).
  • Pulsed fiber laser (material micromachining, scalpel, microscope, laser measurement).

By band range

  • Mid-infrared fiber laser (clinical laser source, laser advice).
  • Eco-friendly fiber laser (medical picture diagnosis, holographic projection).

By doped rare-earth components

  • Ytterbium-doped fiber laser (industrial processing, clinical therapy, national defense).
  • Fiber laser with erbium doping (laser environmental monitoring).
  • Fiber laser with TM doping (laser fine cutting, laser hemostasis).

Lasers are typically called according to a couple of these three groups.

Fiber lasers can be used in a variety of ways. Various subdivided lasers have various features as well as ideal application fields.

For example, the mid-infrared band is risk-free for human eyes and can be strongly absorbed in water. It is an ideal medical laser source;

Erbium-doped fiber is widely used in the field of fiber optics communication because of its ideal wavelength.

Due to its visibility, the eco-friendly laser is crucial in entertainment and forecast.

Application layout of the laser class category corresponding to pertinent markets.

CO2 Laser

The CO2 laser is a type of molecular laser. It is one of the common high-power CW lasers. The major product is the carbon dioxide molecule.

The primary framework of the CO2 laser includes laser tube, optical resonator, power supply, and pump. The main feature is high result power and constant procedure, but the framework is intricate, the quantity is large, and the maintenance is difficult.

CO2 gas laser
The basic structure of a CO2 gas laser

Understanding particle number inversion is crucial to the luminescence of carbon dioxide lasers.

The working materials in the carbon dioxide laser consist of CO2, nitrogen, and helium. After the DC power supply is input, the nitrogen particles in the combined gas will be delighted by electron influence. When the thrilling nitrogen molecules collide with carbon dioxide particles, they move energy to the CO2 molecules. Therefore, CO2 particles transition from reduced power to high power degree, forming fragment number inversion and releasing laser.

  • Nitrogen molecules collide with carbon dioxide molecules after excitation, so that carbon dioxide is excited separately.
fiber laser
  • The excited carbon dioxide molecule jumps down and emits a laser.
Fiber Laser vs CO2 laser

Fiber Laser vs. CO2 Laser

Optical fiber and CO2 lasers have their very own advantages, as well as different lasers must be chosen according to different needs.

Specific application requirements for the cutting innovation that is commonly made use of currently have their advantages and downsides. They can not entirely replace each other but need to complement and coexist.

Because of the type of processing materials, as a result of the absorption impact, fiber lasers are not appropriate for reducing non-metallic products. At the same time, standard CO2 lasers are not ideal for reducing the reflectivity of high-reflectivity materials such as copper and lightweight aluminum.

Regarding reducing rates, CO2 has advantages in sheet thickness > 6mm, while fiber laser cuts sheet much faster.

Workpiece infiltration is needed before laser cutting, and the opening speed of CO2 is significantly faster than that of fiber laser.

In terms of cutting area and high quality, the CO2 laser is much better than the fiber laser all at once.

Comparison between fiber lasers and carbon dioxide lasers

 Fiber laser CO2 laser
Cutting materialNon metallic materials cannot be cutHigh reflective materials have poor adaptability
Cutting speedObvious advantages below 3mm>6mm, CO2  is more advantageous
Penetration efficiencyThe speed is relatively slowThe greater the thickness, the more obvious the advantage
Section qualitySlightly worseBetter roughness and verticality

Fiber laser has higher light conversion effectiveness and also lower use price.

According to the computation, the usage price of fiber laser is 23.4 yuan/hour, the used price of CO2 laser is 39.1 yuan/hour, of which the power cost of fiber laser is 7 yuan/hour, the water cooling price is 8.4 yuan/hour, and other prices are 8 yuan/hour; the power cost of CO2 laser is 21 yuan/hour, the water cooling price is 12.6 yuan/hour, and other prices are 5.5 yuan/hour.

Expense contrast between fiber laser and CO2 laser

 Fiber LaserCO2 Laser
Power (kw)33
Light conversion efficiency30%10%
Power consumption (kw)1030
Electricity price (¥/kWh)11
Load duration70%70%
Power cost (¥/hour)721
Water cooling equipment power (kw)1218
Electricity price (¥/kWh)11
Load duration70%70%
Water cooling cost (¥/hour)8.412.6
Consumables cost (¥/hour)32.5
Module consumption cost (¥/hour)5 
Media cost (¥/hour) 1
Conventional point solution (¥/hour) 2
Other costs (¥/hour)85.5
Use cost (¥/hour)23.439.1

Conclusion

Although each laser does have its own toughness and distinct usage cases, CO2 is an older innovation, and fiber lasers are gaining market quickly as the innovation breakthroughs. With the speed benefits, virtually fifty percent of the operating costs, and three to 4 times better throughput than CO2 lasers, the economic gains that can be gotten from using fiber lasers can be game-changing.

MORE POSTS
laser cleaning engine parts
Laser Clean Engine Parts

Laser Clean Engine Parts Maintaining clean car engine parts is crucial for optimal performance and longevity. Traditional cleaning methods often...

Laser Welding Tips

Laser welding tips: Laser welding is a precise and efficient method for joining materials, particularly when dealing with thicker plates....

what is a 3in1 laser welder?

What is a 3-in-1 Laser Welder? A 3in1 laser welder is a state-of-the-art welding device that combines three essential processes...

Laser Tyre Mold Cleaning

Introduction to Laser Clean Tyre Mold Tire molds play a crucial role in the production of high-quality tires. However, over...

1 thought on “Which is Better: CO₂ or Fiber Laser?”

  1. Avatar
    Enrique Routaboul

    Estimada gente de CHUTIAN!!
    Les cuento que, soy técnico metalúrgico jubilado como supervisor de planta en fábrica oleohidraulica . A su vez matricero ( constructor de moldes, matrices, troqueles) y en mí casa tengo mí pequeño taller en el cual todavía realizó algunas reparaciones, afilados y….A VECES TENGO QUE CONSTRUIR NUEVAS PARTES DE MATRICES DE CORTE, TROQUELES, ETC POR NO TENER MAQUINA DE SOLDAR TIG CON LA QUE PODER RELLENAR DE MATERIAL DURO LOS FILOS DE CORTE.
    Su máquina Láser, creo me sería muy útil también para rellenar las matrices y/o moldes de aceros duros como H12, H13 y al carbono(Sale 1045) afilar y rectificar a su correcta medida para que no desprendan rebabas y se produzca “un corte limpio”. Cómo ustedes sabrán, Argentina está en un muy mal momento económico y las empresas quieren gastar lo menos posible en costes de reparación y mantenimiento.
    Además, realizó trabajos (como hobby) en vidrio de colores con la técnica tifany y a veces debería tener con que soldar alambres de acero inoxidable y/o bronce entre 0,7mm y 1,2mm.
    Hace mucho que estoy leyendo sobre las máquinas láser, específicamente las de más amplio espectro, es decir, las 3 en 1. Soldadora, corte y limpieza láser, dado que en mí tallercito solo tengo un pequeño torno de origen Chino, perforadora de pié, compresor de aire y herramientas eléctricas o a bateria, como rectificadora de mano de cuello largo (que uso en el torno también) tipo universal, minitorno tipo Dremell y….”mucho ingenio y paciencia”!!!
    Ustedes sabrán que Máquina recomendarme dado el amplio rango de mí trabajo.
    He visto que hay máquinas desde, para soldar joyería, hasta corte de aceros al carbono de 1″. (25,4mm).
    Los aceros que debería reconstruir sus filos son muchos de entre 1/4″ a 1″ de espesor, y con bastante maza.
    Tengo buena soldadora por arco y con ella relleno con material duro tipo Conarco 600/800 pero no me sirve para “pequeños detalles”.
    En fin!….espero haberme hecho entender y principalmente comprender “con el poco dinero que nos manejamos acá”.
    Reciban ustedes ¡ Mis más grandes saludos cordiales y deseo de buen comienzo de Año Nuevo!!!
    Enrique Routaboul – teléfono +54 9 351 6720569 WhatsApp.

Leave a Comment

Your email address will not be published. Required fields are marked *

1 × one =

Hi, I am the author of the website and also a laser equipment engineer, if you have any questions about industrial lasers, please contact me by clicking the link below

Skip to content